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Abstract
The joint probability distribution in the full counting statistics (FCS) for noninteracting
electrons is discussed for an arbitrary number of initially separate subsystems which are
connected at t = 0 and separated again at a later time. A simple method to obtain the
leading-order long-time contribution to the logarithm of the characteristic function is presented
which simplifies earlier approaches. New explicit results for the determinant involving the
scattering matrices are found. The joint probability distribution for the charges in two leads is
discussed for Y junctions and dots connected to four leads.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The theory of noise in quantum transport in mesoscopic
systems is a very active field of research [1, 2]. In addition
to the first few moments of the transmitted charge the full
probability distribution can be studied, called full counting
statistics (FCS). This was first done in a publication by Levitov
and Lesovik [3] where noninteracting fermions were treated
using the cumulant generating function. The system usually
studied consists of a finite ‘dot’ region connected to M leads
which initially are separated from the dot region and have
different chemical potentials [3–6]. After connecting the
subsystems the time evolution of the particle transfer between
the leads is studied. In order to avoid mathematical subtleties
it is useful to start with a finite total number of particles
Ntot which can be achieved using leads of finite extent. The
thermodynamic limit is performed only at a later stage. For the
lattice models with a finite number of states at each lattice site
studied in this paper this implies also a finite number NH of the
dimension of the Hilbert space of a single fermion.

For an initial state which is a Slater determinant with
Ntot fermions the characteristic function g(t) for noninteracting
fermions is an Ntot × Ntot determinant. After averaging over
a grand canonical ensemble an expression for g(t) in terms
of an NH × NH determinant can be derived [4, 7, 8]. In
some publications this result is called the ‘Levitov–Lesovik
formula’ [9]. This expression is the formal starting point for
the actual calculation of the characteristic function. It consists
of two steps. The first one is to calculate the time dependence

of the one-particle projection operators Pa(t) onto lead a.
For finite times exact results can be obtained numerically [8].
In the long-time limit an accurate analytical approximation
can be given in terms of scattering states after performing
the thermodynamic limit. In the second step the determinant
over the one-particle Hilbert space has to be calculated.
After the thermodynamic limit has been performed this is
an infinite-dimensional determinant and mathematical care is
necessary [10]. Various approaches have been proposed for the
evaluation of the determinant. Muzykantskii and Adamov [11]
used methods from the theory of singular integral equations to
proceed for M = 2. In the long-time limit they obtained the
leading term for ln g(t) (linear in t) by the exact solution of
a matrix Riemann–Hilbert problem. Their approach provided
the first explicit derivation of the result presented by Levitov
and Lesovik [3]. Alternatively one can use a formal power
series expansion of the logarithm of the determinant [8]. The
term linear in time can then easily be identified and the infinite-
dimensional determinant can be reduced to an energy integral
over the logarithm of an M × M determinant. A third approach
used Szegö’s theorem from the theory of Toeplitz matrices to
obtain the term linear in time [12].

For two leads (M = 2) the contribution to ln g(t) linear in
t vanishes in the case of perfect transmission and subleading
terms logarithmic in time have to be considered. This was
studied analytically by Muzykantskii and Adamov [11] by an
approximate solution of a more complicated Riemann–Hilbert
problem as well as by extensions of Szegö’s theorem [12].
Numerical as well as analytical results in agreement with these
findings were presented by one of us [8].
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In this paper we generalize and simplify the derivation
using the formal power series expansion for ln g(t). After
obtaining the general linear in t contribution the M × M
determinant for the joint probability distribution is examined
in detail. The M × M matrix, of which one has to
evaluate the determinant, is written as the sum of the unit
matrix and a second matrix. This allows us to read off
the general expression for the characteristic function for the
joint probability distribution of two or more observed charged
transfers for arbitrary values of M .

Applications to Y junctions (M = 3) and dots with M = 4
leads are discussed.

2. General formulation

In the following we consider a system which consists of a finite
‘dot’ region described by the Hamiltonian H dot

0 and M leads
with the Hamiltonians H0,a with a = 1, . . . , M . The leads
are initially separated from the dot region. The number of
electrons in the initial state are Ndot

0 and N0,a . We assume the
initial state |�(0)〉 to be an eigenstate of H dot

0 and H0,a:

|�(0)〉 = |E N dot
0

i 〉 ⊗ |E N0,1
n 〉 ⊗ · · · ⊗ |E N0,M

p 〉. (1)

The time evolution for times greater than zero is described by
the Hamiltonian

H = H dot
0 +

∑

a

H0,a +
∑

a

Va ≡ H0 + V . (2)

The term V which couples the leads with the dot region will be
specified later. The probability distribution that Q1 electrons
are transferred to lead 1, Q2 electrons are transferred to lead
2, etc, after time t when the subsystems are separated again, is
given by

w(t, {Q}) = 〈�(t)|
M∏

a=1

δ[Qa − (Na − N0,a)]|�(t)〉

= 1

(2π)M

∫
dλ1 · · · λMe−i

∑
a λa Qa g(t, {λ}). (3)

Here Na is the particle number operator of the lead a and
g(t, {λ}) is the characteristic function. With the particle
number operators Na(t) in the Heisenberg picture g is given
by

g(t, {λ}) = 〈�(0)|ei
∑

λaNa(t)e−i
∑

λaNa |�(0)〉. (4)

The fact that the initial state is assumed to be an eigenstate of
the particle number operators was used. This expression can
be easily generalized to initial statistical operators of the type
ρ0 = ρdot

0 ⊗ρ
(1)
0 ⊗· · ·⊗ρ

(M)
0 . An important example are initial

grand canonical subensembles with different temperatures and
chemical potentials:

ρ
(a)
0 = e−βa (H0,a−μaNa)

Tr e−βa (H0,a−μaNa)
(5)

and ρdot
0 of the same type. Then ρ0 has the generalized

canonical form ρ0 = e−H̄0/Z̄0. Averaging yields for the
characteristic function

g(t, {λ}) = 〈ei
∑

λaNa(t)e−i
∑

λaNa 〉, (6)

where 〈· · ·〉 denotes the averaging with the statistical operator
ρ0. This result is also valid for interacting fermions.

For noninteracting fermions the expectation value can be
simplified using Klich’s trace formula [7, 8]:

Tr(eAeB) = det(1 + eaeb), (7)

where A and B are arbitrary one-particle operators in Fock
space, and a and b are the corresponding operators in the
Hilbert space of a single particle. Therefore the characteristic
function can be expressed as a determinant in the one-particle
Hilbert space:

g(t, {λ}) = det[1 + (ei
∑

a λa Pa(t)e−i
∑

a λa Pa − 1)n̄0]
≡ det[1 + b(t, {λ})], (8)

where Pa is the projection operator in the Hilbert space of one
particle on the states of the ath lead and n̄0 = (eh̄0 + 1)−1

is the Fermi operator. It is determined by the Fermi functions
describing the initial state. In order to obtain joint probability
distributions for arbitrary times the first step is the (numerical)
calculation of the Heisenberg operator Pa(t).

In order to study the long-time behaviour it is useful to
introduce the current operators ja ≡ [Pa, h]/ i , where h is the
Hamiltonian in the Hilbert space of a single particle, and write
Pa(t) as [8]

Pa(t) = Pa(0) +
∫ t

0
ja(t

′) dt ′ ≡ Pa + δPa(t). (9)

The operator b in equation (8) can then be expressed as

b(t, {λ}) =
∑

a

(eiλa − 1)δPa(t)e
−i

∑
a′ λa′ Pa′ n̄0. (10)

In order to avoid reflections from the ends of the leads (far
away from the dot) in the long-time limit, the thermodynamic
limit has to be taken first. In this limit the discrete energy
spectrum of the initially occupied standing wave states |ε j , a〉
becomes continuous and the trace in the one-particle Hilbert
space involves an energy integration for the lead states:

tr b =
∑

i

〈εdot
i |b|εdot

i 〉 +
∑

a

∫
dε 〈ε, a|b|ε, a〉, (11)

with the normalization 〈ε, a|ε ′, a′〉 = δaa′δ(ε − ε ′). Expressed
with these states the projection operator onto lead a is

Pa =
∫

dε |ε, a〉〈ε, a|. (12)

Using det b = exp(tr ln b) in equation (8) the logarithm of the
characteristic function is given by

ln g(t, {λ}) = tr ln[1 + b(t, {λ})]. (13)

The thermodynamic limit of the trace operation is defined
in equation (11). Mathematical subtleties concerning
the existence of the determinant in equation (8) in the
thermodynamic limit were discussed recently [10]. In the
long-time limit the ‘dot part’ of the trace (see equation (11))
gives a finite contribution which will be neglected in the
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following. Alternatively one can avoid the dot states altogether
by including them in (part of) the leads [8]. Using
〈ε, a|n̄0|ε ′, a′〉 = δ(ε−ε ′)δaa′ fa(ε), where fa(ε) are the Fermi
functions of the leads and the matrix elements of the operator
b(t, {λ}) with the lead states are given by

〈ε1, a1|b(t, {λ})|ε2, a2〉=
∑

a

∫ t

0
〈ε1, a1|eiht ′

jae−iht ′ |ε2, a2〉dt ′

× d(λa)e
−iλa2 fa2(ε2), (14)

where d(λa) ≡ eiλa − 1. Equations (13) and (14) summarize
the two tasks in order to obtain the characteristic function in
the thermodynamic limit. In the first step the time evolution of
the matrix element in equation (14) has to be determined. In
the second step the trace in equation (13) has to be performed.

3. Long-time limit

As the current operators ja only involve operators localized
near the dot region one can approximate the time evolution
in the matrix elements in equation (14) in the long-time limit
by e−iht ′ |ε, a〉 ≈ e−iεt ′ |ε, a+〉, where |ε, a+〉 is the scattering
state with an outgoing boundary condition for the connected
system [8]. Then the time integration in equation (14) can be
easily performed:

〈ε1, a1|b(t, {λ})|ε2, a2〉 ≈ ei(ε1−ε2)t − 1

i(ε1 − ε2)

×
∑

a

d(λa)〈ε1, a1 + | ja|ε2, a2+〉e−iλa2 fa2 (ε2). (15)

The fact that a simple analytical expression for the matrix
elements has been derived allows systematic approximations
for calculating the trace in equation (13). The first step is a
formal power series expansion:

ln g(t, {λ}) =
∞∑

n=1

(−1)n+1

n
tr bn(t, {λ}). (16)

In the evaluation of the trace of bn the time-dependent prefactor
of the sum in equation (15) plays a central role. The product of
the factors (eiε j,l t − 1)/ε j,l with ε j,l = ε j − εl is used to obtain
a product of n − 1 ‘energy conserving’ delta functions:

eiε1,2t − 1

iε1,2

eiε2,3 t − 1

iε2,3
· · · eiεn,1t − 1

iεn,1

= sin (ε1,2t/2)

ε1,2/2

sin (ε2,3t/2)

ε2,3/2
· · · sin (εn,1t/2)

εn,1/2

→ (2π)n−1tδ(ε1 − ε2)δ(ε2 − ε3) · · · δ(εn−1 − εn). (17)

Therefore only one energy integration remains and the trace in
the full one-particle Hilbert space can be converted to a trace
in the M-dimensional space of the lead indices a denoted by
tr(M):

tr bn(t, {λ}) → t

2π

∫
dε tr(M) cn(ε, {λ}), (18)

where the M × M matrix c(ε, {λ}) has the matrix elements

ca1a2(ε, {λ}) = 2π
∑

a

d(λa)〈ε, a1 + | ja|ε, a2+〉e−iλa2 fa2 (ε).

(19)

In contrast to the current matrix elements off-diagonal in
energy the diagonal elements in equation (19) can be simply
expressed in terms of the scattering matrix sa1,a2(ε). As shown
in appendix A

2π〈ε, a1 + | ja|ε, a2+〉 = s†
a1a(ε)saa2

(ε) − δa1aδa2a (20)

holds [14]. If we define the M × M matrices e({λ}) and f (ε)

as eaa′({λ}) ≡ eiλa δaa′ and faa′(ε) ≡ fa(ε)δaa′ the matrix c
takes the form (suppressing the energy and λ dependences)

c = (s†ese† − 1) f ≡ c̃ f. (21)

Now the relation ln det(1 + c) = tr ln(1 + c) can be used
backwards. With equations (16) and (18) this yields in leading
time order

ln g(t, {λ}) = t

2π

∫
dε ln det(1 + c). (22)

Subleading corrections increase only logarithmically with
time [11, 8, 12]. The leading-order term was correctly given
by Levitov and Lesovik [3] without presenting a derivation.

4. Evaluation of the determinant

In order to obtain explicit results for the leading order in
time result for ln g(t, {λ}) the determinant in the integrand of
equation (22) has to be calculated:

D(ε, {λ}) ≡ det(1 + c̃ f ) = det(1 − f + s†ese† f ). (23)

In both representations one has to calculate a determinant
of a matrix which is the sum of a diagonal matrix and an
arbitrary matrix. The second decomposition in equation (23)
is usually taken as the starting point [3, 13]. If one is interested
in the probability distribution of the transferred charge in a
single lead or the joint probability distribution of only a few
(e.g. two) of the Q j it turns out to be preferable to use the first
decomposition in equation (23). Then we can use

det(1 + c) = 1 + tr c +
∑

{i< j}
det(2)c(2)

+
∑

{i< j<k}
det(3)c(3) + · · · + det c, (24)

where, for example, det(3)c(3) denotes a 3×3 subdeterminant of
c with the indices given by the summation variables. Because
of c = c̃ f the Fermi functions can be factored out and it is
sufficient to consider the subdeterminants of c̃. The matrix
elements of c̃ are given by

c̃aa′ =
∑

b

s†
ab(e

i(λb−λa′ ) − 1)sba′ ≡
∑

b

s†
abdba′sba′ . (25)

We begin with the discussion of the transferred charge in a
single lead.

3
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4.1. Generalized Levitov–Lesovik formula

We choose a = 1 as the channel index of the observed charge
transfer, i.e. λ1 is different from zero, but all λa with a > 1 are
put to zero. For a′ > 1 this implies

c̃aa′ =
∑

b

s†
ab(e

iλb − 1)sba′ = s†
a1(e

iλ1 − 1)s1a′ ≡ s†
a1d1s1a′,

(26)
while for a′ = 1 one obtains

c̃a1 =
∑

b>1

s†
abd∗

1 sb1 = (δa1 − s†
a1s11)d

∗
1 . (27)

Apart from the additional term d∗
1 in c̃11 the columns of

the matrix c̃ are all proportional to s†
a1. Therefore all

subdeterminants of order larger than two on the rhs of
equation (24) vanish. Using 1 − |s11|2 = ∑

a �=1 |s1a|2 the trace
term is

tr c =
∑

a �=1

|s1a|2(d∗
1 f1 + d1 fa). (28)

The only non-vanishing 2 × 2 matrices are from the pairs
(i, j) = (1, j > 1). In the first column the part proportional
to s†

a1 does not contribute and with d1d∗
1 = −(d1 + d∗

1 ) one
obtains

det(2)c(1a) = −(d1 + d∗
1 )|s1a|2 f1 fa . (29)

Therefore the determinant appearing in equation (22) is given
by

det(1+c) = 1+
∑

a �=1

|s1a|2[d1 fa f̄1+d∗
1 f1 f̄a] ≡ 1+ L1, (30)

where f̄a = 1 − fa . This is the generalized Levitov–
Lesovik formula for the leading time contribution to
ln g(t, λ1, 0, . . . , 0). The derivation presented here simplifies
an earlier one [8].

4.2. Joint probability distribution for two leads

In this subsection we present the general expression for
arbitrary values of M for the characteristic function necessary
to calculate the joint probability distribution for two observed
charge transfers. We evaluate det(1 + c) for arbitrary values
of λ1 and λ2 and put all λi for i > 2 to zero. For j > 2 this
implies

c̃i j =
∑

l

s†
il(e

iλl − 1)sl j = s†
i1d1s1 j + s†

i2d2s2 j . (31)

The third and all higher columns of the matrix c̃ are
proportional to the two column vectors s†

i1 and s†
i2. Only

the first two columns have an additional contribution. Using
d21 − d∗

1 = d2 + d2d∗
1 and d12 − d∗

2 = d1 + d1d∗
2 they are given

by
c̃i1 = d∗

1 δi1 − s†
i1d∗

1 s11 + s†
i2(d2 + d2d∗

1 )s21,

c̃i2 = d∗
2 δi2 + s†

i1(d1 + d1d∗
2 )s12 − s†

i2d∗
2 s22.

(32)

The structure of the matrix c̃ implies that only determinants up
to order four on the rhs of equation (24) can be different from
zero.

Of the fourth-order determinants only those of the c(12i j)

with j > i > 2 are non-vanishing. As new objects 2 × 2
determinants formed by scattering matrix elements appear:

S(2)
i j ≡ s1i s2 j − s1 j s2i . (33)

For j > i > 2 they contain the interference effect in the
scattering of two fermions from the leads i and j to the leads 1
and 2. Using again di d∗

i = −(di + d∗
i ) one obtains

det(4)c(12i j) = (d1 + d∗
1 )(d2 + d∗

2 )|S(2)

i j |2 f1 f2 fi f j . (34)

The evaluation of all the determinants of order three and
smaller is straightforward but tedious. It is therefore presented
in appendix B. With the abbreviation

B j ≡ 1
2 (|S(2)

1 j |2 − |S(2)
2 j |2 − |s2 j |2 + |s1 j |2) (35)

the general result for D(ε, λ1, λ2, 0, . . . , 0) = det(1 + c) is,
using the definition in equation (30)

D = 1 + L1 + L2 +
[

d1d∗
2 f̄1 f2

(
|s12|2 +

∑

j �=1,2

B j f j

)

+ (1 ↔ 2)

]
+ 1

2

∑

i, j>2

|S(2)

i j |2(d1 f̄1 fi + d∗
1 f1 f̄i )

× (d2 f̄2 f j + d∗
2 f2 f̄ j ). (36)

In the double sum the restriction to i �= j is included by the
fact that the S(2)

ii vanish.
The generalization to joint probability distributions of

more than two charges is obvious but the expressions become
rather lengthy. Therefore this will not be discussed further
here. Instead we next present the result for all λi �= 0 for a
special form of the scattering matrix.

4.3. Separable t-matrix

The special case of a dot consisting of a single level, called a
‘simple star’, is described by a scattering matrix of the form
(see appendix C)

si j = δi j + αiα
∗
j u. (37)

The unitarity of the scattering matrix implies

u + u∗ + |u|2
∑

i

|αi |2 = 0. (38)

In the complex u plane this is the equation of a circle with
radius rα around (−rα, 0), where 1/rα = ∑

i |αi |2. For i �= j
this implies the inequality

|si j |2 � 4|αi |2|α j |2
(
∑

i |αi |2)2
(39)

used later.
For the calculation of D(ε, {λ}) it is useful to write c as

c = (s†es − e)e† f ≡ (s†es − e) f̃ . (40)

4
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Using the unitarity relation equation (38) and the definition

Sj ≡
∑

l

|αl |2(eiλl − eiλ j ) (41)

the matrix elements of b defined by αbα∗ ≡ s†es − e,
i.e. factoring out the diagonal matrices α and α∗, are given by

bi j = (eiλi − eiλ j )u + |u|2Sj . (42)

It is easy to see that all determinants of submatrices of
dimension three and larger vanish. For the m×m submatrices i
and j take values il with i1 < i2 < · · · < im . The determinant
is unchanged if one subtracts the first row from all the other
ones:

bi j − bi1 j = (eiλi − eiλi1 )u. (43)

As the second and all higher rows are proportional to each
other the subdeterminants of dimension m � 3 vanish. The
2 × 2 determinants are readily calculated. Using the unitarity
relation equation (38) the result for D takes the simple form

D(ε, {λ}) = 1 +
∑

i �= j

|αi |2|α j |2|u|2di j f̄i f j

= 1 +
∑

i �= j

|si j |2(ei(λi −λ j ) − 1) f̄i f j

= 1 +
∑

i

Li +
∑

i �= j

|si j |2di d
∗
j f̄i f j . (44)

For the special case of the separable t-matrix the interference
terms discussed in section 4.2 and all higher ones vanish.

5. Shot noise

In this section we mainly elucidate our result equation (36)
which determines the joint probability distribution for two
leads and present separately results for M = 3 and M � 4
in the zero temperature limit. As we present explicit results
we have to specify the Hamiltonian introduced in equation (2).
In the one-particle Hilbert space the leads are described as
nearest-neighbour hopping chains:

h0a = −
∑

m�1

(|m, a〉〈m + 1, a| + h.c.). (45)

Two types of dots are considered. For the ‘simple star’ the dot
Hamiltonian and the coupling term are given by

hdot
0 = V0|0〉〈0|, v = −

M∑

a=1

(τa|1, a〉〈0| + h.c.). (46)

For the dot consisting of a ring of Mdot sites pierced by a
magnetic flux we have

hdot
0 =

Mdot∑

i=1

Vi |i〉〈i | +
Mdot∑

i=1

(τi,i+1|i〉〈i + 1| + h.c.), (47)

where Mdot + 1 corresponds to 1. The coupling to the leads is
assumed to be

v = −
M∑

a=1

(τa|1, a〉〈ia| + h.c.). (48)

5.1. Y junctions

For M = 3 the double sum in equation (36) is missing and B3

defined in equation (35) takes a simpler form as |S(2)

23 |2 = |s31|2
and |S(2)

13 |2 = |s32|2 holds [3]. Using the unitarity of the
scattering matrix equation (36) simplifies to

D = 1+ L1 + L2 +[d1d∗
2 f̄1 f2(|s12|2 f̄3 +|s21|2 f3)+(1 ↔ 2)].

(49)
For the three-leg simple star |s12|2 = |s21|2 holds and
equation (49) reduces to the M = 3 version of equation (44)
with λ3 = 0. At zero temperature equation (49) reduces to
D = 1 + L1 + L2 when lead 1 and 2 have equal chemical
potentials. The correlation between the charge transfers to
leads 1 and 2 is still present as ln g is determined by ln D.

The joint probability distribution shown in figure 1 is
for the case μ3 = μ2 + �μ. If the energy dependence of
the scattering matrix elements can be neglected in the energy
interval [μ2, μ3] the energy integration in equation (22) can be
carried out and the characteristic function g is given by

g(t, λ1, λ2, 0) = [1+|s13|2(eiλ1 −1)+|s23|2(eiλ2 −1)]Nt , (50)

where Nt = t�μ/(2π). For integer values of Nt the λ

integrations in equation (3) can easily be performed and the
pnm(t) in

w(t, Q1, Q2) =
∑

n,m

pnm(t)δ(Q1 − n)δ(Q2 − m) (51)

are given by

pnm(t) =
(

N

n + m

)(
n + m

m

)
T n

1 T m
2 (1 − T1 − T2)

N−(n+m),

(52)
where the Ti = |si3|2 are the transmission probabilities from
lead 3 to leads 1 and 2.

For the ‘simple star’ with V0 = 0, τ1 = τ3 = 1 the
transmission probabilities in the middle of the band are given
by (see appendix C)

T1 = 4

(2 + |τ2|2)2
, T2 = 4|τ2|2

(2 + |τ2|2)2
. (53)

For τ2 = 0 the connected system corresponds to an infinite
ideal chain with perfect transmission T1 = 1. If the coupling
to lead 2 is switched on T1 decreases and equals T2 = 4/9 for
equal coupling τ2 = 1.

Figure 1 shows the probabilities pnm(t) for Nt = 20
and three values of τ2. For τ2 = 0 the open circle shows
the ‘vanishing shot noise’ which is an artefact of the leading
order in t approximation for ln g. The neglected logarithmic
corrections convert the single delta function to a Gaussian with
a width proportional to (ln Nt )

1/2 for Nt  1 [11, 8, 12].
For a weak coupling to lead 2 (τ2 = 0.5, dark dots) the
anticorrelation between the transported charges to leads 1 and
2 is clearly visible. It was discussed previously on the level of
moments [1]. The light dots correspond to the case of equal
couplings to the star.

5
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Figure 1. Joint probability distribution for a three-leg simple star for
Nt = 20 and three different coupling strengths τ2 to lead 2 using the
leading-order time approximation for ln g. The area of the dots is
proportional to the pnm in equation (52).

5.2. Systems with M � 4 leads

For Y junctions there are no interference effects in two-particle
scattering processes. The double sum term on the rhs of
equation (36) only contributes for M � 4. To simplify the
discussion we here discuss only the special case μ1 = μ2 ≡
μR , i.e. f1 = f2 ≡ fR at zero temperature which implies
f 2

R = fR . Then equation (36) simplifies to

D = 1+ L1 + L2 + 1
2

∑

i, j>2

|S(2)

i j |2(d1d2 f̄ R fi f j +d∗
1 d∗

2 fR f̄i f̄ j ).

(54)
Already for M = 4 there are various possibilities for the
chemical potentials of the leads 3 and 4. The simplest one
is to assume them to be equal. For arbitrary M � 4 and
μi = μL = μR + �μ for all i > 2 equation (54) further
simplifies for the energy interval μR < ε < μL to

D = 1 +
∑

i=1,2

di

∑

j>2

|si j |2 + d1d2

∑

j>i>2

|S(2)
i j |2. (55)

The interference terms in the double sum also occur in the
distribution of the total charge Q1 + Q2 in the leads with
chemical potential μR which can be obtained by putting λ1 =
λ2 = λ. As the prefactor d2 = (eiλ − 1)2 has no contribution
linear in λ the interference terms only enter the cumulants κi

with i � 2. When the energy dependence of the scattering
matrix for μR < ε < μL is neglected the probability
distribution for integer Nt = t�μ/(2π)  1 is given by

w(S)(t, Q1 + Q2) =
∑

n�0

p(S)
n (t)δ(Q1 + Q2 − n) (56)

with

p(S)
n =

[n/2]∑

l=l0

(
Nt

n − l

)(
n − l

l

)
(1−A+B)Nt−n+l Bl(A−2B)n−2l,

(57)

Figure 2. Probability distributions for a four-site ring pierced by a
magnetic flux �. The full symbols present the p(S)

n of the probability
distribution of the sum Q = Q1 + Q2. The open symbols show the
probability distribution for the charge transfer to a single lead. The
lines are a guide to the eye. Because of the magnetic flux the
distributions for lead 1 and 2 (the two curves with open circles) differ
except in the particle–hole symmetric case (open squares).

where l0 = max(0, n − Nt ) and A and B are given by

A =
2∑

i=1

∑

j>2

|si j |2, B =
∑

j>i>2

|S(2)
i j |2. (58)

In figure 2 we show results for the p(S)
n for a symmetric ring

dot with τa = 0.5, Va = 0 and τi,i+1 = ei�/Md , where � is the
magnetic flux through the ring. We choose M = Md = 4 with
each ring site connected to one lead. The scattering matrix
elements needed are presented in appendix C. In addition to
the probability distribution w(S) of the sum Q1 + Q2 (filled
symbols) we show the probability distributions for the charge
transfer to the single leads 1 and 2 (open symbols) which
follow from equation (30). The circles correspond to the case
when the chemical potentials are close to the centre of the
band. Because |s12|2 = |s14|2 holds for ε = 0 for all values of
� the probability distributions for the charge transfer to leads
1 and 2 are identical. In the generic case they are different
for � �= 0(mod 2π) as shown for ε = −1 (circles). For
the parameters chosen it is clearly visible that the sum of
the widths of these single charge probability distributions is
smaller than the width of w(S). This is another manifestation
of the anticorrelation effect [1] mentioned in the discussion of
figure 1.

The joint probability distribution w(t, Q1, Q2) corre-
sponding to the parameter values used in figure 2 is shown in
figure 3. In contrast to figure 1 where the asymmetry in the
(dark dot) distribution resulted from asymmetric couplings, the
asymmetry of the ε = −1 distribution in figure 3 is due to the
magnetic flux.

As a simple application of equation (44) for the separable
t-matrix we consider the distribution of the total charge Q R =
Q1 + · · · + QMR transferred to the first MR channels which
are all assumed to have the chemical potential μR . For the
case where the other ML = M − MR channels have chemical

6
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Figure 3. Joint probability distributions for a four-site ring for the
parameters used in figure 2.

potential μL = μR + �μ equation (44) reduces to the M =
2 Levitov–Lesovik formula equation (30) with the effective
transmission probability

Teff =
MR∑

i=1

M∑

j=MR+1

|si j |2 � 1. (59)

The inequality follows from equation (39) or the explicit result
for the simple star in appendix C.

6. Summary

A simple derivation of the leading time order result for the
logarithm of the characteristic function which determines the
full counting statistics for systems of noninteracting fermions
was presented. The energy-dependent determinant involving
the scattering matrix of the M-leads system was simplified
analytically for three cases. For the distribution of charge
transfer to a single lead only the absolute values of the
scattering matrix elements enter. For the joint probability
distribution of the charges in two leads interference effects in
the scattering of pairs of particles become important for M �
4. For a separable scattering matrix which describes a simple
star-like geometry the M × M determinant was evaluated
for joint probability distributions for an arbitrary number of
observed charges. All interference terms vanish and only the
absolute values of the scattering matrix elements enter as in the
generalized Levitov–Lesovik formula.

Explicit results for the probability distributions were
presented for the simple star and a ring pierced by a magnetic
flux at zero temperature. Various manifestations of the
anticorrelation effects in the charge transfer to the observed
leads were shown.

Finite temperature effects will be discussed in a
forthcoming publication.

Appendix A. Proof of equation (20)

In this appendix we present proof of the relation for current
matrix elements with equal energies [14].

The scattering states |ε, a+〉 introduced in section 3 obey
the Lippmann–Schwinger equation [15]

|ε, a+〉 = |ε, a〉 + g0(ε + i0)v|ε, a+〉, (A.1)

where v is the operator which describes the connection of
the leads with the dot region and g0(z) = (z − h0)

−1 is the
unperturbed resolvent.

As the projection operators Pa commute with h0 the
current matrix elements are given by

〈ε, a1 + | ja|ε, a2+〉 = 1

i
〈ε, a1 + |[Pa, v]|ε, a2+〉. (A.2)

Using equation (12) for Pa the first term of the commutator is

〈ε, a1 +|Pav|ε, a2+〉 =
∫

dε ′ 〈ε, a1 +|ε ′, a〉〈ε ′, a|v|ε, a2+〉.
(A.3)

With the help of the Lippmann–Schwinger equation the
overlaps of the unperturbed states with the scattering states can
be written as

〈ε, a1 + |ε ′, a〉 = δ(ε − ε ′)δa1a + 〈ε, a1 + |v|ε ′, a〉
ε − ε ′ − i0

. (A.4)

This yields

〈ε, a1 + |Pav|ε, a2+〉 = 〈ε, a|v|ε, a2+〉δa1a

+
∫

dε ′ 〈ε, a1 + |v|ε ′, a〉〈ε ′, a|v|ε, a2+〉
ε − ε ′ − i0

. (A.5)

The matrix element of vPa can be calculated correspondingly.
In the second term in equation (A.5) the −i0 in the denominator
is replaced by i0. This leads to a delta function for the
commutator and the energy integration can be carried out. One
obtains

〈ε, a1 + | ja|ε, a2+〉 = i〈ε, a1 + |v|ε, a〉δa2a

− i〈ε, a|v|ε, a2+〉δa1a

+ 2π〈ε, a1 + |v|ε, a〉〈ε, a|v|ε, a2+〉. (A.6)

With the definition of the scattering matrix saa′(ε) for potential
scattering [15]

saa′(ε) = δaa′ −2π i〈ε, a|v|ε, a′+〉 ≡ δaa′ −2π itaa′(ε) (A.7)

the validity of equation (20) directly follows.
The unitarity of the scattering matrix can be explicitly

confirmed for the multi-lead system [8].

Appendix B. Derivation of equation (36)

In this appendix we discuss the m × m subdeterminants of the
matrix c̃ defined in equation (21) for λi = 0 for all i � 3.
They are characterized by the index set in ∈ [1, M] with i1 <

i2 < · · · < im . The corresponding submatrices are denoted by
c̃(i1,i2,...,im ). The matrix elements of these submatrices can be

7
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directly read off from the matrix elements of the full M × M
matrix c̃:

c̃i j = δi1δ1 j d
∗
1 + δi2δ2 j d

∗
2 + s†

i1α j + s†
i2β j , (B.1)

where the α j and β j are given in equations (31) and (32).
Like the full matrix c̃ all columns of the submatrices are linear
combinations of at most the four column vectors δi1, δi2, s†

i1

and s†
i2. Therefore all subdeterminants with m > 4 vanish. In

the following we discuss the cases m = 4, 3, 2 separately.

m = 4: Only for the index set (1, 2, i, j) with 2 < i < j
do all four different column vectors appear. Therefore all
other subdeterminants vanish. For the determinant of c̃(1,2,i, j)

the following formula is used. Let a ≡ (s†
i1, s†

j1)
T and b ≡

(s†
i2, s†

j2)
T be two column vectors. Then the 2 × 2 determinant

of linear combinations of the two vectors is given by

det(aαi + bβi , aα j + bβ j) = (αiβ j − α jβi) det(a, b)

= (αiβ j − α jβi)(ai b j − a j bi). (B.2)

The use of this relation and equations (31) and (32) yield
equation (34).

m = 3: All subdeterminants of c̃i jk with 2 < i < j < k
vanish. For i = 1 or 2 and 2 < j < k the calculation proceeds
using equation (B.2):

det c̃(2 jk) = d1d2d∗
2 |s j1sk2 − sk1s j2|2 = −d1(d2 + d∗

2 )|S(2)
jk |2.
(B.3)

In c̃(12i) with i > 2 the first two columns l = 1, 2 are of the
type αl a + βlb + d∗

l el , where el is the lth unit column vector
while in the third column αi a+βi b this additional contribution
is missing. Therefore the determinants det(el, a, b) and
det(e1, e2, a(b)) have to be evaluated. This leads to

det c̃(12i) = (d1 + d∗
1 )d∗

2 (|S(2)
2i |2 − |s1i |2) + (1 ↔ 2). (B.4)

For m = 2 arbitrary combinations of i < j in
det c̃(i j) contribute. The evaluation is straightforward using
equation (B.2).

In order to obtain the form presented in equation (36) the
following ‘sum rules’ for the |S(2)

i j |2 were used which follow
from the unitarity of the scattering matrix:

∑

i>2

|S(2)

i j |2 = |s1 j |2 + |s2 j |2 − |S(2)

1 j |2 − |S(2)

2 j |2,
∑

j>i>2

|S(2)

i j |2 = 1 + |S(2)

12 |2 − |s11|2 − |s22|2 − |s12|2 − |s21|2.

Appendix C. Results for the scattering matrices

In this appendix the scattering matrices for the two dot models
presented in section 5 are calculated. The t-matrix defined
in equation (A.7) can be expressed via the resolvent operator
g(z) = (z − h)−1 as [15]

taa′(ε) = 〈ε, a|v|ε, a′〉 + 〈ε, a|vg(ε + i0)v|ε, a′〉. (C.1)

For both dot models discussed in section 5 the first term on the
rhs vanishes. With |〈ε, a|1, a〉|2 = √

1 − (ε/2)2/π this yields

saa′(ε) = δaa′ − 2iτaτa′
√

1 − (ε/2)2〈ia|g(ε + i0)|ia′ 〉. (C.2)

For the simple dot all |ia〉 are given by |0〉 and the scattering
matrix is of the separable form discussed in section 4.3.

Using the projection onto the states on the ring the full
resolvent matrix elements in equation (C.2) can be written
as [8]

〈ia|g(z)|ia′ 〉 = 〈ia|[z − hdot
0 − γ (z)]−1|ia′ 〉 (C.3)

with

γ (z) = g0
b(z)

M∑

a=1

|τa|2|ia〉〈ia|, (C.4)

where hdot
0 is the one-particle Hamiltonian of the ring and g0

b(z)
is the diagonal element of the resolvent of the semi-infinite
chain at the boundary. For z = ε ± i0 it is given by

g0
b(ε ± i0) = (ε ∓ i

√
4 − ε2)/2. (C.5)

The matrix inversion in equation (C.3) is trivial for the simple
star because Mdot = 1:

〈0|g(z)|0〉 = 1

z − V0 − ∑
a |τa|2g0

b(z)
. (C.6)

For a symmetric ring with M = Mdot, τa = τ, Va = V0 and
τi,i+1 = τdotei�/M the matrix inversion is straightforward using
plane wave states on the dot [16]:

〈im|g(z)|in〉 = 1

M

×
M∑

j=1

eik j (m−n)

z − V0 − |τ |2g0
b(z) + 2τdot cos (k j + �/M)

,

where k j = 2π j/M .
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